Tumor cells upregulate normoxic HIF-1α in response to doxorubicin.

نویسندگان

  • Yiting Cao
  • Joseph M Eble
  • Ejung Moon
  • Hong Yuan
  • Douglas H Weitzel
  • Chelsea D Landon
  • Charleen Yu-Chih Nien
  • Gabi Hanna
  • Jeremy N Rich
  • James M Provenzale
  • Mark W Dewhirst
چکیده

Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. Although its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance, and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here, we show that, under normoxic conditions, HIF-1α is upregulated in tumor cells in response to doxorubicin, a chemotherapeutic agent used to treat many cancers. In addition, doxorubicin enhanced VEGF secretion by normoxic tumor cells and stimulated tumor angiogenesis. Doxorubicin-induced accumulation of HIF-1α in normoxic cells was caused by increased expression and activation of STAT1, the activation of which stimulated expression of iNOS and its synthesis of nitric oxide (NO) in tumor cells. Mechanistic investigations established that blocking NO synthesis or STAT1 activation was sufficient to attenuate the HIF-1α accumulation induced by doxorubicin in normoxic cancer cells. To our knowledge, this is the first report that a chemotherapeutic drug can induce HIF-1α accumulation in normoxic cells, an efficacy-limiting activity. Our results argue that HIF-1α-targeting strategies may enhance doxorubicin efficacy. More generally, they suggest a broader perspective on the design of combination chemotherapy approaches with immediate clinical impact.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Cells Upregulate Normoxic HIF-1a in Response to Doxorubicin

Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. Although its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance, and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1a. Here, we show...

متن کامل

The hypoxia-mimetic agent CoCl2 induces chemotherapy resistance in LOVO colorectal cancer cells

Hypoxia, which is an important factor that mediates tumor progression and poor treatment response, is particularly associated with tumor chemoresistance. However, the molecular mechanisms underlying hypoxia-induced colorectal cancer chemoresistance remain unclear. The present study aimed to explore the mechanism underlying hypoxia‑induced chemotherapy resistance in LOVO colorectal cancer cells....

متن کامل

Hypoxia as a target for drug combination therapy of liver cancer

Hepatocellular carcinoma (HCC) is the third most frequent cause of cancer deaths worldwide. The standard of care for intermediate HCC is transarterial chemoembolization, which combines tumour embolization with locoregional delivery of the chemotherapeutic doxorubicin. Embolization therapies induce hypoxia, leading to the escape and proliferation of hypoxia-adapted cancer cells. The transcriptio...

متن کامل

The 2-oxoglutarate analog 3-oxoglutarate decreases normoxic hypoxia-inducible factor-1α in cancer cells, induces cell death, and reduces tumor xenograft growth

The cellular response to hypoxia is primarily regulated by the hypoxia-inducible factors (HIFs). HIF-1α is also a major mediator of tumor physiology, and its abundance is correlated with therapeutic resistance in a broad range of cancers. Accumulation of HIF-1α under hypoxia is mainly controlled by the oxygen-sensing HIF prolyl 4-hydroxylases (EGLNs, also known as PHDs). Here, we identified a h...

متن کامل

Radiosensitization of Normoxic and Hypoxic H1339 Lung Tumor Cells by Heat Shock Protein 90 Inhibition Is Independent of Hypoxia Inducible Factor-1α

BACKGROUND Ionizing irradiation is a commonly accepted treatment modality for lung cancer patients. However, the clinical outcome is hampered by normal tissue toxicity and tumor hypoxia. Since tumors often have higher levels of active heat shock protein 90 (Hsp90) than normal tissues, targeting of Hsp90 might provide a promising strategy to sensitize tumors towards irradiation. Hsp90 client pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 73 20  شماره 

صفحات  -

تاریخ انتشار 2013